7,548 research outputs found

    Reasoning about Minimal Belief and Negation as Failure

    Full text link
    We investigate the problem of reasoning in the propositional fragment of MBNF, the logic of minimal belief and negation as failure introduced by Lifschitz, which can be considered as a unifying framework for several nonmonotonic formalisms, including default logic, autoepistemic logic, circumscription, epistemic queries, and logic programming. We characterize the complexity and provide algorithms for reasoning in propositional MBNF. In particular, we show that entailment in propositional MBNF lies at the third level of the polynomial hierarchy, hence it is harder than reasoning in all the above mentioned propositional formalisms for nonmonotonic reasoning. We also prove the exact correspondence between negation as failure in MBNF and negative introspection in Moore's autoepistemic logic

    Electron-phonon coupling in metallic carbon nanotubes: Dispersionless electron propagation despite dissipation

    Get PDF
    A recent study [Rosati, Dolcini, and Rossi, Appl. Phys. Lett. 106, 243101 (2015)] has predicted that, while in semiconducting single-walled carbon nanotubes (SWNTs) an electronic wave packet experiences the typical spatial diffusion of conventional materials, in metallic SWNTs its shape remains essentially unaltered up to micron distances at room temperature, even in the presence of the electron-phonon coupling. Here, by utilizing a Lindblad-based density-matrix approach enabling us to account for both dissipation and decoherence effects, we test such prediction by analyzing various aspects that were so far unexplored. In particular, accounting for initial nonequilibrium excitations, characterized by an excess energy E0E_0, and including both intra- and interband phonon scattering, we show that for realistically high values of E0E_0 the electronic diffusion is extremely small and nearly independent of its energetic distribution, in spite of a significant energy-dissipation and decoherence dynamics. Furthermore, we demonstrate that the effect is robust with respect to the variation of the chemical potential. Our results thus suggest that metallic SWNTs are a promising platform to realise quantum channels for the non-dispersive transmission of electronic wave packets.Comment: 14 pages, 7 figure

    A FIRST DETERMINATION OF THE SURFACE DENSITY OF GALAXY CLUSTERS AT VERY LOW X--RAY FLUXES

    Get PDF
    We present the first results of a serendipitous search for clusters of galaxies in deep ROSAT-PSPC pointed observations at high galactic latitude. The survey is being carried out using a Wavelet based Detection Algorithm which is not biased against extended, low surface brightness sources. A new flux--diameter limited sample of 10 cluster candidates has been created from 3deg2\rm\sim 3 \, deg^2 surveyed area. Preliminary CCD observations have revealed that a large fraction of these candidates correspond to a visible enhancement in the galaxy surface density, and several others have been identified from other surveys. We believe these sources to be either low--moderate redshift groups or intermediate to high redshift clusters. We show X-ray and optical images of some of the clusters identified to date. We present, for the first time, the derived number density of the galaxy clusters to a flux limit of 11014ergcm2s1\rm 1\cdot 10^{-14} erg cm^{-2} s^{-1} (0.5--2.0 keV). This extends the logN\log N--logS\log S of previous cluster surveys by more than one decade in flux. Results are compared to theoretical predictions for cluster number counts.Comment: uuencoded compressed Postscript, 7 pages including 4 figures. Accepted for publication in Ap. J. Letters

    Electromagnetic transitions for A=3 nuclear systems

    Full text link
    Recent advances in the study of pd radiative capture in a wide range of center-of-mass energy below and above deuteron breakup threshold are presented and discussed.Comment: Invited lead talk at the 19th European Conference on Few-Body Problems in Physics, Groningen, The Netherlands, 8/23 - 8/27 2004, 5 pages, 4 figure

    Electromagnetic structure of A=2 and 3 nuclei and the nuclear current operator

    Full text link
    Different models for conserved two- and three-body electromagnetic currents are constructed from two- and three-nucleon interactions, using either meson-exchange mechanisms or minimal substitution in the momentum dependence of these interactions. The connection between these two different schemes is elucidated. A number of low-energy electronuclear observables, including (i) npnp radiative capture at thermal neutron energies and deuteron photodisintegration at low energies, (ii) ndnd and pdpd radiative capture reactions, and (iii) isoscalar and isovector magnetic form factors of 3^3H and 3^3He, are calculated in order to make a comparative study of these models for the current operator. The realistic Argonne v18v_{18} two-nucleon and Urbana IX or Tucson-Melbourne three-nucleon interactions are taken as a case study. For AA=3 processes, the bound and continuum wave functions, both below and above deuteron breakup threshold, are obtained with the correlated hyperspherical-harmonics method. Three-body currents give small but significant contributions to some of the polarization observables in the 2^2H(p,γp,\gamma)3^3He process and the 2^2H(n,γn,\gamma)3^3H cross section at thermal neutron energies. It is shown that the use of a current which did not exactly satisfy current conservation with the two- and three-nucleon interactions in the Hamiltonian was responsible for some of the discrepancies reported in previous studies between the experimental and theoretical polarization observables in pdpd radiative capture.Comment: 48 pages, 25 figures, 4 tables, revtex4. Submitted to Phys. Rev.

    Chiral effective field theory predictions for muon capture on deuteron and 3He

    Full text link
    The muon-capture reactions 2H(\mu^-,\nu_\mu)nn and 3He(\mu^-,\nu_\mu)3H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c_D and c_E, present in the three-nucleon potential and (c_D) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and 3He are predicted to be 399(3) sec^{-1} and 1494 (21) sec^{-1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on 3He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.Comment: 4 pages, 2 figures, revisited version accepted for publication on Phys. Rev. Let

    Electrodisintegration of 3^3He below and above deuteron breakup threshold

    Full text link
    Recent advances in the study of electrodisintegration of 3He are presented and discussed. The pair-correlated hyperspherical harmonics method is used to calculate the initial and final state wave functions, with a realistic Hamiltonian consisting of the Argonne v18 two-nucleon and Urbana IX three-nucleon interactions. The model for the nuclear current and charge operators retains one- and many-body contributions. Particular attention is made in the construction of the two-body current operators arising from the momentum-dependent part of the two-nucleon interaction. Three-body current operators are also included so that the full current operator is strictly conserved. The present model for the nuclear current operator is tested comparing theoretical predictions and experimental data of pd radiative capture cross section and spin observables.Comment: 5 pages, 5 figures, submitted to Eur. Phys. J.
    corecore